
C H A P T E R

71

Coding in Science

When integration talk turns to science courses, I’m often asked by teachers
and administrators whether computer science is a “science” in the same way

we think of chemistry, biology, or physics as sciences. It’s a reasonable question,
given that “science” is right there in the name. If we do think of computer science
as a domain of science equal to Earth, life, or physical science, it might change
our approach to fi nding space for it in the school day. While the National Science
Teachers Association (NSTA) hasn’t released an offi cial position statement articu-
lating the role of computer science in science education, NSTA Executive Director
David Evans published a statement titled “Computer Science Should Supplement,
not Supplant Science Education” to the NSTA blog (Evans, 2016). The statement
was released in response to a number of related events, including the release of the
K–12 Computer Science Framework, an increasing number of states allowing com-
puter science to count for math or science graduation credit, and California Gov-
ernor Jerry Brown signing a bill to teach CS in every grade. In his statement, Evans
expresses concern about the impact of increased computer science adoption on sci-
ence classes, with a particular focus on the fear that computer science courses may
supplant traditional science courses in high schools, to the detriment of students.

6

©2018 ISTE. Do not copy or distribute.

72

PART 2 Coding in Core Content Areas

The Argument for Coding in Science
While I am inclined to argue against some of Evans’ positions, such as his defeatist
assumption that there’s no time in the day to teach new subjects, he does make
good points pertinent to our goals here. First, he points out that there are principles
of computer science included in the NGSS:

Computer Science principles can be found in the NGSS. Science and
Engineering Practices include developing and using models, and using
mathematics and computational thinking. In the integrated STEM class-
room, using the principles of NGSS, educators are working to seek out
real-world, relevant, authentic problems that would be of interest to stu-
dents and ask them to apply computational thinking to solve the problem
using data analysis, visualization, seeking patterns, and computation.
(Evans, 2016)

In support of this overlap, or perhaps even interdependence, between computer
science and traditionally recognized sciences, Evans suggests that in K–8 we teach
computer science within the context of existing math and science courses. The
authors of the K–12 Computer Science Framework have attempted to articulate this
overlap, and opportunity for integration, with a Venn diagram (See Figure 6.1). The
overlapping standards are shared in Table 6.1.

None of this actually clarifies whether computer science is a science. Peter Den-
ning (2005) explored this question from an industry perspective. He proposed that
the two are inherently interconnected, if technically independent. While many in
the computer science and science communities have argued for computer science
to be considered a first-class object within the NGSS, the reality is that it is—by
design—a supporting character (Bienkowski, 2015). For the purposes of integration
into K–12 curriculum, I propose that we consider computer science plays a role
similar to engineering in the NGSS. It’s a set of skills and practices that are essen-
tial to the study of all sciences (to varying degrees), and a set of discrete skills and
knowledge that should be taught alongside other sciences. While the NGSS may not
consider computer science a first-class object that warrants its own science course,
it is more than merely a tool for teaching the subjects. This is the viewpoint from
which I’ll explore approaches to integration.

Major Areas of Overlap

Looking at the K–12 Computer Science Framework’s Venn diagram (see Fig-
ure 6.1), notice there are two major themes common to computer science and the
NGSS: modeling and simulation, and data analysis. Sheena Vaidyanathan dove into

©2018 ISTE. Do not copy or distribute.

73

Coding in Science

this overlap in an article for EdSurge, in which she explored potential paths for
teaching that mirror my own experiences (Vaidyanathan, 2017). When it comes to
modeling and simulation, the NGSS explicitly calls out the need for students to not
only use computer models to explore scientifi c phenomena but also to modify and
develop those models on their own (National Research Council, 2013). Irene Lee
has lead this charge, developing excellent resources to support this overlap in her
Project Growing Up Thinking Scientifi cally (GUTS) program, which was created
as an after-school program and grew into a classroom-implemented module called
“Computer Science in Science,” in collaboration with Code.org (visit the Project
GUTS website at projectguts.com).

In Project GUTS, students follow a trajectory called use-modify-create with a num-
ber of different multiagent models to explore everything from chemical reactions,
to predator–prey relationships, to the spread of disease. This process fi rst engages
students in using an existing computational model to explore a scientifi c phenome-
non. Second, they explore the code that runs the model to understand the assump-
tions made. Once students understand the model as provided, they can make
simple modifi cations to the code to add new behaviors or better
address simplifying assumptions. Finally, students are able
to create their own models, using those they’ve seen before
as a guideline. This approach encourages students to
critically question other scientifi c models they encounter
as those models move from unassailable black boxes to
comprehendible, and modifi able, abstractions with
necessary simplifi cations.

In one of my favorite progressions, students use a
provided model to study the relationship between
mountain lions and rabbits. By analyzing the code
that drives this model, students learn that there
are many missing pieces that could impact the accu-
racy of the model, such as the relationship between
caloric intake and ability to move or reproduce.

The second major area of overlap, data, is a less trod ground
by existing tools and curricula. The role that data plays in computing will be an
increasingly important component of K–12 education, particularly because of
the ways in which “big data” continues to change the world. As we develop better
and more accessible tools for teaching students to grapple with big data, I expect
we’ll fi nd many opportunities to bring the real world of modern science into the

Figure 6.1: Computer
science Venn diagram.

©2018 ISTE. Do not copy or distribute.

74

PART 2 Coding in Core Content Areas

Table 6.1 �Overlap of NGSS Standards Between CS and Subject Areas

CS + MATH CS + MATH + SCI/ENG CS + SCI/ENG

DEVELOP AND USE
ABSTRACTIONS

	M2.� Reason abstractly and
quantitatively

	M7.� Look for and make use
of structure

	M8.� Look for and express
regularity in repeated
reasoning

	CS4.� Developing and using
abstractions

USE TOOLS WHEN
COLLABORATING

	M5.� Use appropriate tools
strategically

	CS2.� Collaborating Around
Computing

COMMUNICATE PRECISELY

	M6.� Attend to precision

	CS7.� Communicating About
Computing

MODEL

	 S2. Develop and use models

	M4. Model with mathematics

	CS4.� Developing and Using
Abstractions

	CS6.� Testing and Refining
Computational Artifacts

USE COMPUTATIONAL
THINKING

	 S5.� Use mathematics and com-
putational thinking

	CS3.� Recognizing and Defining
Computational Problems

	CS5.� Creating Computational
Artifacts

DEFINE PROBLEMS

	 S1.� Ask questions and define
problems

	M1.� Make sense of problems
and persevere in solving
them

	CS3.� Recognizing and Defining
Computational Problems

COMMUNICATE RATIONALE

	 S7.� Engage in argument from
evidence

	 S8.� Obtain, evaluate, and com-
municate information

	M3.� Construct viable arguments
and critique the reasoning
of others

	CS7.� Communicating About
Computing

COMMUNICATE WITH DATA

	 S4.� Anazlye and interpret
data

	CS7.� Communicating About
Computing

CREATE ARTIFACTS

	 S3.� Plan and carry out
investigations

	 S6.� Construct explanations
and design solutions

	CS4.� Developing and Using
Abstractions

	CS5.� Creating Computational
Artifacts

	CS6.� Testing and Refining
Computational Artifacts

Source: K–12 Computer Science Framework (2016)

©2018 ISTE. Do not copy or distribute.

75

Coding in Science

classroom, recognizing that practicing scientists are increasingly spending more
time analyzing the data from experiments than running those experiments, partic-
ularly as we find more ways for computers and robots to deal with the manual work
of experimentation (Wolinsky, 2007).

That said, even the ability to collect and analyze small data computationally can
present a significant hurdle. The aforementioned Project GUTS ties into this
quite effectively, as the StarLogo Nova environment allows students to not only
collect, but graph in real-time, data coming from their simulations. Alternatively,
we can rely on curated data sets from companies, governments, and other orga-
nizations to provide students with real-world data. The Awesome Public Datasets
project (github.com/awesomedata/awesome-public-datasets) provides access to
hundreds of data sets, many freely available, organized by content type. Some
curricula, such as Bootstrap’s new Data Science course, are developing new tools
and techniques to bring data science to new computer science students in ways that
can be incorporated into the study of science, but also statistics, civics, or social
studies (Krishnamurthi & Schanzer, 2017).

Unplugged Activities

Routing and Deadlock

Throughout their middle-school science classes, students learn about different
systems, from the cellular level to the systems of planetary motion, and beyond.
The NGSS defines systems as crosscutting concepts, meaning a system has “appli-
cation across all domains of science” and is therefore “a way of linking the differ-
ent domains of science” (National Research Council, 2013). Despite the apparent
importance of teaching systems in all fields of science, and using them to help
students draw connects between different domains, there is one incredibly ubiq-
uitous system which is left out of the picture. A system that we engage with daily,
even constantly. A system which, though man-made, exhibits many of the organic
qualities of naturally occurring systems. Computer networks in general, and the
internet in particular, are complex systems with myriad interesting behaviors to
study and connect back to other systems in science. One such interesting behavior
is the routing of information from one point to another.

The Orange Game is a CS Unplugged activity in which students participate in a
group simulation of information traveling over a network (2002b). Students are
seated in a circle and given a letter that serves as their address. Oranges, labeled
with those same letters, are introduced to the circle. The network of students must

©2018 ISTE. Do not copy or distribute.

76

PART 2 Coding in Core Content Areas

attempt to pass the oranges until all students have the orange(s) addressed to them.
In the process, students will find that they have limited resources (hands), and if
they attempt to work only in their own self-interest by holding onto the oranges
addressed to them, those resources will become deadlocked and cannot be used to
continue passing oranges to other students in the network. Though networks in real
life are made of machines, they still need to balance the needs of the greater net-
work with their own needs to ensure the whole system continues working.

Find the activity here: creativecodingbook.com/unplugged/routing_and_deadlock

Phylogenetics

The field of bioinformatics combines biology with computer science by using algo-
rithms and data to solve problems in biology. One key advancement that bioinfor-
matics has unlocked is the ability for biologists to reconstruct phylogenetic (evolu-
tionary) trees, which can be used to trace how an animal’s current genetic makeup
evolved from an ancestor.

This CS Unplugged activity engages students in the process of reconstructing a
phylogenetic tree using techniques from bioinformatics (2014). Though many of
the concepts in this activity delve into topics typically introduced in higher-level
math or science courses, the activity is designed for students as young as ten, and it
can be used as a hands-on introduction to these concepts without requiring a great
deal of prior knowledge. Using a list of words to stand in for the nucleotide bases,
students play a game of “telephone,”—attempting to communicate a predetermined
combination of words. Students record what they hear as they pass the message
along, which leaves the class with record of how the message evolved through the
game. By the end of the activity students will have used phylogenetics to reconstruct
the evolutionary path of their game of telephone.

Find the activity here: creativecodingbook.com/unplugged/phylogenetics

Project GUTS offers a middle school science program consisting of four instructional
modules and professional development for the integration of computer science
concepts into science classrooms through computer modeling and simulation.

projectguts.org

CREATIVE CODING CONNECTIONS: Project GUTS

©2018 ISTE. Do not copy or distribute.

77

Coding in Science

PROJECT: Lab Buddy
creativecodingbook.com/projects/lab_buddy

Overview

While we can certainly use App Lab to develop simple scientifi c models for study,
it’s not the ideal tool for developing models and simulations. Instead, rely on one
of its cooler features—a simple-to-use database back end—to create a “lab buddy”
app that mimics how real scientists might use programming to assist the gathering,
processing, and display of data from a scientifi c experiment.

This project is a little bit different than the others, in that everyone uses the same
app while gathering data from a science experiment. This is the most complicated
program presented in this book, but students aren’t required to do most (if any) of
the programming. Borrowing from the use-modify-create method, students explore
an example app to understand how it works before fi guring out any necessary mod-
ifi cations for your chosen experiment. If modifi cations are necessary, they will be
made by the teacher, with student assistance, beforehand.

Using this modifi ed version of the sample app to record data, the class completes
an experiment. Once the experiment is fi nished, they can export all of that data for
basic analysis either in a separate App Lab app or a spreadsheet tool like Google
Sheets or Microsoft Excel. Though the experiment won’t produce big-data levels of
data, it will certainly generate more than any one student would in an experiment,
and it will be distributed in a fashion similar to how real big data is sourced!

Duration

If you do the entirety of this project, you should budget a day for students to get
their hands dirty with App Lab, a day to run the experiment, and a day or two to
analyze the data. To shorten the project, you can potentially eliminate the initial
App Lab activity and have students use the shared app to gather data during the
experiment, but then you lose any understanding of how the program functions or
can be modifi ed.

Objectives

• Gather a large volume of data with the aid of a computational tool.

• Summarize a large volume of data using a computational tool.

©2018 ISTE. Do not copy or distribute.

78

PART 2 Coding in Core Content Areas

Vocabulary

Big Data: Extremely large data sets that, through computational analysis, can
reveal trends and patterns.

Database: A structured set of data that can be written to, and read by, a program.

Object: In JavaScript, a type of variable that represents a collection of values.

Teacher Prep

The key to making this project effective is fi nding the right experiment to use for
the data collection. You can use existing experiments you already teach, but you
may need to reconsider the details to ensure that the type of data you’re asking stu-
dents to collect is both easy to collect in App Lab and lends itself to simple analysis
through summarizing values. A good experiment for this might involve recording
data that are:

• not dependent on time as factor in data collection (this makes it more diffi cult
to summarize data across different students);

• easily categorized as a distinct set of values (e.g., the precipitate is red, blue, or
green); or

• easily represented as a numeric value (e.g., temperature, pH, duration of
reaction).

For the example app, I assume that students are measuring a single value across
multiple specimens, such as the pH value of a series of liquids. You can increase the
power and diffi culty of this project by measuring multiple values.

Warm Up

• Prompt: Raise your hand if you’ve ever seen an ad on a website that seemed like
it was targeted specifi cally at you. Maybe it was something for which you had
recently searched, or a band that you already like.

• Discuss: How do websites know what ads to show to you?

Everything you do on the internet generates data about you—the sites you visit,
ads you click on, even your location on Earth when you connect to the internet.
This massive collection of data from computer users is known as big data, and by
analyzing this big data, companies who don’t actually know who you are can make
a pretty good prediction about what you’ll like, or what you won’t like.

©2018 ISTE. Do not copy or distribute.

79

Coding in Science

Scientists also use big data to run experiments on a massive scale to solve extremely
large problems, such as decoding the human genome or searching for extraterres-
trial life.

Activity 1: Modifying the App

Announce to the class that they’re going to run an experiment today, but instead of
everyone taking their own readings and analyzing only what they gathered, they’re
going to take a lead from the internet and gather big data (or maybe “medium
data”) by making a program that collects all of our data in one central location,
which we can use later to analyze results.

Figure 6.2: Lab Buddy starter code.

Remixing

Remixing is the act of taking an existing work, making your own copy, and then
modifying the copy to meet your needs. In App Lab, you can create a remix by fi rst
viewing the code, and then clicking the Remix button.

Create a remix of the Lab Buddy starter project and share it with your students.
Give them a chance to experiment with the program, entering whatever false

©2018 ISTE. Do not copy or distribute.

80

PART 2 Coding in Core Content Areas

data they wish. As students explore the app, ask them to consider the following
questions:

• What happens when you press the Record Value button?

• What does the chart at the bottom display?

• How could you change the chart so that it is more useful or meaningful?

Ask the class to share their thoughts about the preceding prompts. They should
have noticed that when they clicked Record Value it added their data to the chart,
but also that the chart contained data from other sources (the rest of the class).
They likely found the chart meaningless as-is, but maybe adding a different type of
visual, categorization, or fi ltering would make it more useful.

At this point, you can reveal the code that’s running under the hood, and poten-
tially start modifying it for your own needs. Have each study make a remix of your
project by clicking the View Code and then Remix buttons. Give students a chance
to read through the code on their own, and then walk through it as a class:

onEvent(“record_value”, “click”, function(event) {

 var new_reading = {};

 new_reading.sample = getText(“sample”);

 new_reading.value = getNumber(“value”);

 createRecord(“experiment_log”, new_reading, function(record) {

 drawChartFromRecords(“chart”, “scatter”, “experiment_log”,

 [“sample”, “value”]);

 });

});

• The main onEvent() block responds to the user clicking on the button with ID
“record_value”.

• The variable new_reading is an object that will let users collect multiple values
in one variable that can be saved to our database.

• The property new_reading.sample adds the text in the dropdown with ID
“sample” to the object new_reading.

• The property new_reading.value adds the number entered in the text fi eld
“value” to the object new_reading.

©2018 ISTE. Do not copy or distribute.

