
39

C H A P T E R

3

Data
Dialogue

39

This chapter explores the fundamental concept of data and variables as
they relate to coding. Definitions and examples are shared along with a project
to explore variables.

Also included in this chapter:

•	 Definitions of data types and how they are declared in different program-
ming languages

•	 Standards-aligned variable project using Visual Studio

•	 Feature: “Coding + Math during Preservice Teacher Development” by Dr.
Cory Gleasman

•	 Resources for learning more about data and variables

40

G iven the importance of data as one of the foundational building blocks of any
program, it is important that beginning programmers have a solid foundation

in how the variables that hold data are created and manipulated in code. Even the
best of programming efforts can be derailed by errors related to using variables
that are of the incorrect, or incompatible, types for the data being stored in them.
However, before we discuss the variables and their types, a quick primer on how
computers actually store data, any kind of data, will be helpful in shaping overall
understanding of how computer programs work.

All data on computers are represented as a series of binary numbers stored in bits.
Binary numbers have only one of two values: 0 or 1. A bit is the smallest unit of
information storage on a computer; however, the smallest unit that can be given an
address by a computer is a byte, which is comprised of eight bits. Although hav-
ing students learn the base-2 system of mathematics is not particularly useful for
learning programming, they should at least understand that each data type has a
limited number of bytes allocated to it, as well as restrictions on the kinds of data
each can store. It needs to be understood that once a section of memory is allocated
to a variable, that space cannot be used for any other purpose within that program
for the duration it is running. Given that computer memory is a limited resource,
it is not possible to allocate unlimited memory to variables, and if too much space
is allocated, the increased use of memory runs the risk of slowing the program’s
execution. Thus, programming languages limit the amount of resources, or bytes,
allocated to different types of variables and rely on the programmer to select those
appropriate to their program’s needs. Beyond memory needs, there is another,
more important, reason for selecting the appropriate type of variable. When your
program attempts to perform some kind of operation on the data, mistyped data
(i.e., data of one type being assigned to a variable of a different type) can lead to
program crashes, lost data, or other unexpected results.

There are many variable types across the different programming languages, but
most programming tasks that beginning programmers can reasonably expect to
encounter can be handled with a small subset of data types that handle the most
common forms of data. In a K–5 setting, data in the form of integers, floating
decimals, Boolean values, and strings should handle the vast majority of their data
storage needs. The integer data type is capable of storing numeric values from
about negative two billion to positive two billion, which is more than sufficient to
handle a wide range of programming possibilities. The float data type provides even
greater numeric data capacity and includes accuracy to seven digits beyond the

41

CHAPTER 3 Data Dialogue

TY
PE

IN
TE

G
E
R

FL
OA

TI
N

G

DE
CI

M
AL

B
OO

LE
AN

ST
R
IN

G

C
in

t m
yC

ou
nt

 =
 5

;
flo

at
 m

yP
i =

 3
.1

4;
in

t m
yB

1
=

0;
ch

ar
 n

am
e[

10
] =

 “B
ob

”;

C#
in

t m
yC

ou
nt

 =
 5

;
flo

at
 m

yP
i =

 3
.1

4f
;

bo
ol

 m
yB

1
=

fa
lse

;
st

rin
g

na
m

e
=

“B
ob

”;

Py
th

on
m

yC
ou

nt
 =

 5
m

yP
i =

 3
.1

4
m

yB
1

=
Fa

lse
na

m
e

=
“B

ob
”

V
is

ua
l

Ba
si

c
D

im
 m

yC
ou

nt
 a

s
In

te
ge

r =
 5

D
im

 m
yP

i a
s fl

oa
t =

 3
.1

4
D

im
 m

yB
1

as
 B

oo
le

an
 =

 0
D

im
 n

am
e

as
 S

tr
in

g
=

“B
ob

”

Ja
va

in
t m

yC
ou

nt
 =

 5
;

flo
at

 m
yP

i =
 3

.1
4f

Bo
ol

ea
n

m
yB

1;

m
yB

1
=

fa
lse

;
St

rin
g

na
m

e
=

“B
ob

”;

Sc
ra

tc
h

Ta
bl

e
3.

1

D
ec

la
ri

ng
 B

as
ic

 D
at

a
Ty

pe
s b

y
Pr

og
ra

m
m

in
g

La
ng

ua
ge

42

decimal point for fractional values. Programs using fractional numbers written by
elementary students would not likely require more precision than a float variable
can provide. The frequent use of Boolean logic in programming, testing whether
some condition is true or false, makes the Boolean variable type important to
understand as an early foundational CT concept as well. Finally, all programs will
use the string variable type in some capacity, which stores alphanumeric characters
used to communicate with the end user. String variables are stored as text and have
a capacity of about one billion characters.

Before using a variable in code, the programmer must declare the variable to tell the
computer to reserve space for the data that it will hold. In programming languages
that are strongly typed, the programmer must also specify the type of data that will
be stored in the variables at the time they declare them. Table 3.1 provides exam-
ples of how the previously described subset of variable types are declared across
various languages. Note that Python and Scratch are dynamically typed languages;
they set variable types by attempting to interpret the data assigned to them. While
this makes using variables quick and easy, it can lead to errors when the program-
mer crosses types in the handling of data. It also does not require the programmer
to consider variable types, which is a skill useful and necessary to work with some
other languages. Scratch is the easiest to declare of the examples provided, but it
does not require any syntax and its programs only run on the Scratch website. Text-
based programming languages require syntax in order to allow the code to run in
other platforms and contexts.

In the examples provided in Table 3.1, the terms beginning with “my” are variables
that are created and named by the programmer; hence they could be named any-
thing as long as they follow the guidelines for the particular language. In text-based
languages, they generally can contain letters, digits, and the underscore character
(_). They are case-sensitive (i.e., “score” is different from “Score”) and often are
required to begin with a letter or an underscore. In addition, text-based program-
ming languages each have a set of keywords that are reserved for a particular
purpose (such as int, float, and bool), and as such, they cannot be used for variable
names. Fortunately, many application program interface (API) designs include fea-
tures that alert the programmer when variable naming conventions aren’t followed.

43

CHAPTER 3 Data Dialogue

Getting Out the Blocks
Project: Introduction to Variables

k12stemequity.com/intro-to-variables

Overview

Although instruction on how variables are declared, named, and typed can occur
offline in unplugged activities, we encourage allowing students to experiment
with creating variables in a computer API so they gain familiarity in an authentic
development context. For our project example, we’ll use the C# (pronounced “C
Sharp”) programming language to allow its strongly typed behavior to highlight
the differences in how data are handled in code. We will use the Microsoft Visual
Studio (MVS) Community Edition (available for free download for PC or Mac at
visualstudio.microsoft.com/downloads) to take advantage of its built-in debugging
and coding assistance. For this sample lesson, you will need to launch a new proj-
ect from the MVS file menu and create a Console App using the C# language (see
instructions that follow).

Duration

Depending on your students’ familiarity with basic coding concepts and Micro-
soft Visual Studio, they will need approximately forty-five minutes to an hour to
complete this project. Allow students to work in pairs when necessary. Consider
separating this project into two lessons and give students time on the second day
to discuss any obstacles or difficulties encountered while working through their
projects.

44

Standards Addressed

CSTA Standards for CS Educators
•	5c. Promote student self-efficacy. Facilitate students’ engagement in the learn-

ing process and encourage students to take leadership of their own learning
by encouraging creativity and use of a variety of resources and problem-solv-
ing techniques.

•	5e. Encourage student communication about computing. Create meaningful
opportunities for students to discuss, read, and write about computing.

ISTE Standards for Students
•	5. Computational Thinker. Students develop and employ strategies for under-

standing and solving problems in ways that leverage the power of technologi-
cal methods to develop and test solutions.

•	5b. Students collect data or identify relevant data sets, use digital tools to ana-
lyze them, and represent data in various ways to facilitate problem-solving
and decision-making.

CSTA K–12 Standards
ALGORITHMS AND PROGRAMMING

•	1B-AP-09. Create programs that use variables to store and modify data.

•	2-AP-11. Create clearly named variables that represent different data types
and perform operations on their values.

•	3A-AP-14. Use lists to simplify solutions, generalizing computational prob-
lems instead of repeatedly using simple variables.

K–12 Computer Science Framework
•	Practice 4. Developing and using abstractions

•	Practice 5. Creating computational artifacts

CCSS Mathematical Practices
•	MP.1. Make sense of problems and persevere solving them.

•	CCSSM 2.OA.1. Represent and solve problems involving addition and sub-
traction. Use addition and subtraction within 100 to solve one- and two-
step word problems involving situations of adding to, taking from, putting

45

CHAPTER 3 Data Dialogue

together, taking apart, and comparing, with unknowns in all positions (e.g.,
by using drawings and equations with a symbol for the unknown number to
represent the problem).

•	3.OA.8. Solve problems involving the four operations, and identify and
explain patterns in arithmetic. Solve two-step word problems using the four
operations. Represent these problems using equations with a letter standing
for the unknown quantity. Assess the reasonableness of answers using men-
tal computation and estimation strategies, including rounding.

•	4.OA.3. Use the four operations with whole numbers to solve problems. Solve
multistep word problems posed with whole numbers and having whole-num-
ber answers using the four operations, including problems in which remain-
ders must be interpreted. Represent these problems using equations with
a letter standing for the unknown quantity. Assess the reasonableness of
answers using mental computation and estimation strategies, including
rounding.

Brennan and Resnick’s Framework
•	Being Incremental and Iterative.

Step-By-Step Instructions

For this project example, you will need to launch a new project from the MVS file
menu and create a Console App using the C# language (see Figure 3.1). A console
application is one designed to be used for a text-only interface program. Although
MVS can be used to create graphical user interfaces, games, mobile apps, and web-
based applications, the console application is typically used for beginning program-
ming due to its simple and straightforward characteristics.

Give your new project a name (the example in Figure 3.2 is named “MyConsole-
App”) and note the location where your project will be saved.

Once the program loads, you will see the boilerplate template text shown below
in the large window on the left side of your screen. This is the main editor where
your programming code is entered, and it is where you will spend most of your
time. The smaller Solution Explorer window to the right shows all of the files that
are part of a project, which lets you launch other files to open in the main editor.

46

The window along the bottom of the screen (see Figure 3.3) is the output window
and will be used for debugging. For now, we will concentrate on the main editor
window. Notice the use of curly braces (“{ }”) to create a hierarchy in the code. Each
beginning brace must have an ending brace, and the editing window depicts gray
dotted lines to indicate which braces are paired. The rightmost set of braces con-
tains the Main method, which tells the computer where your program begins. Your
Main method created from the template should have the “Console.WriteLine(“Hello
World!”);” line in it already. But if you have an older version of MVS, you may need
to enter this line yourself. If you need to enter it, make sure to end the statement
with “;”. All statements in the Main method must end with a semicolon.

The Console.WriteLine statement is actually a separate method that executes
specific code on the information contained in the parentheses. In this case, it tells
the computer to write the line of text in the quotation marks (“Hello World!”) to the

Figure 3.1 Launch a new Visual Studio project.

47

CHAPTER 3 Data Dialogue

console application window. Although it’s just a few lines of code, this represents a
complete program that can be run across many types of computers to produce the
same results that it does here. Have the students run the program by clicking on the
green triangle on the icon bar above the main editor (see in Figure 3.3).

The output window displays the text contained in the Console.WriteLine statement
(see Figure 3.4). While congratulations are in order for creating a program, the next
step is to explore ways to add more functionality. According to Brennan and Resnick’s
Framework, this practice could be considered “Being Incremental and Iterative,”
whereby students apply an adaptive mindset as they test parts and play around with
the code. Additionally, such an activity gives students an opportunity to strengthen
their ability to “make sense of problems and persevere in solving them” (CCSS.Math.
Practice.MP1).

Figure 3.2 Name and create new project.

48

One of the most important practices programmers will learn is commenting within
their code. Comments help to narrate the action taking place in a program and
provide insight into the thinking behind it. This will help the programmer, and
others who read the code later, to understand what was intended when the code
was written. Research has found that a programming learning approach requiring
students to comment on their logic and intended structure before actually writ-
ing code improves the accuracy and proficiency of their coding (Sengupta, 2009).
Unfortunately, due to the extra time it takes to provide thorough comments in code,
even seasoned programmers don’t always take the time to provide a solid roadmap
for their programs.

The syntax used for writing comments in a programming environment varies across
different languages, but in C# a line is rendered a comment when it starts with two
forward slashes (//). This tells the computer that anything on the line after the

Figure 3.3 Project startup window containing Hello World! program boilerplate code.

49

CHAPTER 3 Data Dialogue

slashes is commentary and should not be executed as code. Text across multiple
lines can be commented either with a beginning “/*” and an ending “*/” or by using
double forward slashes at the beginning of each line. To cultivate good program-
ming habits, beginners should be encouraged to document their steps as much as
possible. For the exercise illustrated below, students would be instructed to write a
comment line to describe the text that they will be printing to the console, followed
by a WriteLine() method with the to-be-printed text in quotes. They can simply edit
the existing WriteLine statement to reflect their own statement. Remind students
to end the statement with a semicolon and to make sure they don’t remove any of
the curly braces; otherwise, they will receive errors when they run the program. As
before, they will click the run icon to start the program in a console window.

Figure 3.4 Hello World! program output.

50

Figure 3.5 Add code comment and edit output code.

Figure 3.6 Program output after revisions.

51

CHAPTER 3 Data Dialogue

The console app window now displays the students’ revised text. As before, the
console window can be closed by pressing any key on the keyboard. Next, we will
change our options to clean up the debugging code that appears when we run our
console application.

Under the Tools menu, select “Options” and then put a check next to the option
shown in the graphic featured in Figure 3.7. Note that you may have to scroll to
the bottom of the dialog box window to find the option. Click “OK” once you have
checked the option.

Figure 3.7 Changing project options.

52

If you run the program now, you will no longer see the debugging text. However, it
may run and close so quickly that you will not have a chance to read your output.
Therefore, you’ll want to add one additional statement to your program (shown in
Figure 3.8).

Figure 3.8 Adding Console.ReadKey(); statement.

Figure 3.9 Program output after project option change.

The additional statement will allow your program to run without the extra debug-
ging text, and your output will be clean, containing only the information you pro-
grammed it to write (see Figure 3.9).

53

CHAPTER 3 Data Dialogue

Now let’s move on to working with variables. We’ll start out with the string type
variable, which is used frequently in programming. As previously noted, string vari-
ables are used to hold data that will be identified and manipulated as text. Although
a text variable can store numbers, it stores them as text as well. This means that you
cannot perform calculations on any numbers stored in them (without first convert-
ing them), just as you cannot perform meaningful calculations on words or letters.
To perform calculations, the data needs to be stored in a numeric variable such as
an integer or float variable type. The next exercise will allow us to manipulate data
stored in string variables and will highlight the kinds of issues that can arise when
they are treated as numeric variables in most programming languages.

Have students update their console application code to read as shown in Figure
3.10. The code includes a comment for each line of text to explain what the pro-
grammer intends to happen. Experienced programmers usually do not comment on

Figure 3.10 Completed project code.

54

each line of code; instead they comment on selected lines or entire blocks of code
at a time. However, beginners can benefit from having to think through and explain
their programming intentions and will find these explanations helpful when trying
to pick up on a project days later. The code on line 10 has not changed (note that
your line numbers may be different depending on your spacing). Line 13 asks the
user what their favorite color is and stores their answer in a string variable named
“userFavColor”. A new command is introduced on line 16: Console.ReadLine(),
which reads the user’s response to the question and assigns it to the string userFa-
vColor. Note that the string userFavColor is being declared and assigned the value
from Console.ReadLine() in the same line.

Line 19 uses the data provided by the user (favorite color) as part of the sentence
responding to the user. The user’s favorite color is stored in the string variable user-
FavColor and is added to sentence text before and after it. Note the use of “+” signs
when adding strings and/or string variables together. Also note that spaces need
to be entered in the quote marks to keep the words from all running together
when the strings are combined. A comment has been added above the Console.
ReadKey() statement to explain its purpose. The output of the program is shown in
Figure 3.11.

Figure 3.11 Program output from completed project.

55

CHAPTER 3 Data Dialogue

Before moving on to the next exercise, save your program file as shown in Figure 3.12.

Figure 3.12 Saving the project.

56

For the final exercise in this chapter, students explore declaring mathematical and
Boolean variables. We’ll start off with a new project using the menu option shown
in Figure 3.13.

From the dialog window, select the C# language option and Console App, as before
(see Figure 3.14).

Name the project “MyVariableApp” and create the project (see Figure 3.15).

The Console.WriteLine(“Hello World!”) line can be replaced with the MyVariable-
App code (downloaded from the book website) to save time. However, if an instruc-
tor would like to provide students with practice coding from scratch and working in
the MVS code editor, they can enter the code shown in Figure 3.16 manually.

Figure 3.13 Start new project.

57

CHAPTER 3 Data Dialogue

Figure 3.15

Name new project
“MyVariableApp”.

Figure 3.16

Replace Console.
WriteLine(“Hello World!”)
statement with project
code shown in next figure
(3.17).

Figure 3.14

Select programming
language and project type.

58

Figure 3.17 shows the program after the “Hello World!” statement has been
replaced by the template text for this exercise. The code shown only needs to have
the three variable declarations completed with the variable type required for the
respective data descriptions. The arrows point to placeholder text (???) that needs
to be replaced with either “int”, “float”, or “bool” based on the data requirements for
each. You will notice wavy red lines below some of the text in the program similar
to the spell-check functionality seen in many word processors and browsers. In this
case, the warnings are part of an extensive code-checking function Microsoft calls

Figure 3.18

Project code with the
correct variable types
entered.

Figure 3.17

Type or download
the code shown
here from
k12stemequity.com.
Replace “???” with
“int”, “float”, or
“bool”.

59

CHAPTER 3 Data Dialogue

“Intellisense,” which alerts the programmer that some syntax needs to be corrected.
Just as with word processors, the user can hover over the wavy red line to activate
popup boxes that provide clues as to what needs to be corrected. The use of pro-
gramming environments with functions such as these assists beginners in learning
syntax and finding common errors before they get to the debugging stage.

In this case, the variables have warnings on them because they have not been prop-
erly declared in the program. Once students have been made aware of the different
kinds of data that can be stored in each data type, selecting the correct answers
should be pretty straightforward. However, it is helpful to encourage them to
attempt to select incorrect data types to learn how the editor guides them to correct
their mistakes.

Figure 3.18 displays the program completed with the correct variable types entered
in place of the placeholders. Notice that once the correct answers were entered, all
of the wavy red lines disappeared and the program runs without issues.

Figure 3.19 shows the output to the console window when the program is run. In
each case, the program stored and wrote each of the variable values as expected.

Figure 3.19 Corrected
program output.

60

Mathematical Connections
Although the program compiled to complete the console application project is a
rather simple one in terms of functionality, it engages a number of math concepts
that strengthens students’ understanding of them. The discussion of variable types
starts to form their understanding of the differences between integers and floating
decimals, even if they are not yet ready to perform calculations. The assignment
of data to a variable (albeit text data) starts to plant the idea of using a variable to
represent something else, as well as using that variable as part of a larger process.
Learning variable types should include discussing how the Integer type can be used
to hold whole numbers. Common Core State Standards for Mathematics (CCSSM)
call for students to be performing addition and subtraction operations with positive
integers as early as kindergarten (K.CC, K.OA) and multiplication and division of
positive integers by grade 3 (3.OA, 3.NBT). By grade 4 , they call for students to
understand decimal notation for fractions (4.NF) and to perform operations with
decimals to hundredths by grade 5 (5.NBT), both of which align with the Float
variable type. Students are expected to determine whether equations involving
addition and subtraction are true or false by grade 1 (1.OA), giving context to the
Boolean data type. Given that these are concepts that students are expected to start
grasping in K–5 classrooms, programming approaches that insulate students from
the thought processes necessary to declare variables in code miss an opportunity to
help shore up their foundation in some basic math and CS concepts.

Dr. Cory Gleasman shares his approach to preparing preservice teachers to use
coding with their math instruction. He challenges the notion of putting too much
focus on a specific tool or platform, warning of the potential developmental harm
that can come from bringing the math content in as an afterthought to a coding les-
son, rather than purposefully integrating it within. His insights inform elementary
teacher education in CS and math pedagogy.

61

CHAPTER 3 Data Dialogue

Coding + Math during Preservice
Teacher Development

DR . CORY GLEASMAN

Assistant Professor of Computer Science Education at Tennessee Technological University

I’ve witnessed the lack of K–5 CS education provided by university teacher preparation
programs. Not only are K–5 preservice teachers apprehensive of the terms computer
science and coding, but so are teacher educators who are preparing our future teach-
ers. Computer science and coding are not the same and are frequently mistaken for
one another, especially by preservice teacher candidates. Computer science consists
of broad overarching theories of computing. While coding is a skillful act contingent
upon the understanding of CT concepts and computing knowledge bases, when
instructing elementary preservice teachers I have found explaining this differentiation
to be imperative for them to be successful with instruction on lesson plans involving
block-based coding. For the past four years, I have been researching the cross sections
of K–5 mathematics and block-based coding languages in order to offer preservice
teachers a practical approach to integrating CS into their instruction. Furthermore, I
have set out to establish a set of design guidelines for teacher educators to follow if
they wish to create a higher-education learning environment, enabling K–5 preser-
vice teachers to integrate coding into their mathematics instruction. I have placed an
emphasis on viewing the cross section between K–5 mathematics and coding through
a computational thinking lens and then using the intersection of computational think-
ing to create math teaching opportunities.

Through multiple instructional and research study iterations, I developed a five-week inter-
vention course called Block-Based Coding and Computational Thinking for Conceptual
Mathematics (B2C3Math). It was created to serve as a template for integrating block-based
coding into elementary preservice teacher mathematics methods courses. The feedback
surrounding the implementation of this intervention course has been extremely positive.
The B2C3Math intervention was implemented three times at the University of Georgia and
is currently in its fourth iteration at Tennessee Technological University.

62

The notion of using coding as a tool to facil-
itate mathematics is not new. In the 1980s,
Seymour Papert detailed his coding-math-
ematics learning theories in his memorable
book Mindstorms: Children, Computers, and
Powerful Ideas, and they are still relevant
today. What is different is the plethora
of tools and accompanying frameworks
at our disposal. Many times it becomes
overwhelming having so many coding
platforms as options, and a focus is placed
on the tool and the products made from
manipulating the tool. Within B2C3Math,
preservice teachers are taught to ensure
learning opportunities are occurring during
the coding process and not dependent
upon a coded product. I preach that coding
platforms can and will forever change;
however, the underlying concepts can be
engaged to elicit similar mathematics learn-
ing regardless of the technologies in play. The
focus on the overlapping of math and coding
concepts in the form of CT helps promote the
learning of both math and coding, not just the
procedural learning of a block-based coding language. I witness preservice teachers
rely on drag-and-drop coding curriculums, which are time-efficient, but can be more
harmful than good, especially at the developmental level. Helping preservice teachers
understand how to develop a coding-mathematics activity has been more beneficial
than teaching a mapped-out coding curriculum during teacher preparation. During
the first B2C3Math iteration, preservice teachers tended to plan a lesson where their
future students were coding; however, math learning followed the coding process and
was dependent upon visual outputs. Design guidelines and instruction associated with

Computational
Thinking

Block-Based
Programming

Elementary
Mathematics

Figure 3.20 Cross section between
mathematics and coding (photo credit:

Gleasman & Kim, 2018).

63

CHAPTER 3 Data Dialogue

B2C3Math were altered to ensure preservice teachers evoked math learning to occur
simultaneously with coding processes.

Much data and relevant findings have surfaced as a result of research surrounding
B2C3Math, but the most impactful and eye-opening conclusion I realize after its
implementation is preservice teachers enjoy the innovation and creativity required
to create coding-math lesson plans. They have expressed that coding and CT are an
avenue in which to teach elementary math. While participating in the B2C3Math
course, many preservice teachers were hesitant to develop coding lesson plans; how-
ever, I have witnessed preservice teachers alter their attitudes and perceptions. They
now view the incorporation of block-based coding-math lessons as a feasible way to
enhance their future students’ mathematical understanding.

For more information regarding the B2C3Math intervention, see our article in
Springer’s Digital Experiences in Mathematics Education Journal titled “Pre-Service
Teachers’ Use of Block-Based Programming and Computational Thinking to Teach
Elementary Mathematics” (Gleasman & Kim, 2020).

Mission Clarity
Working with data is a fundamental expectation at the core of computer program-
ming. Number sense, as the foundation upon which mathematics is built, is founda-
tional to students’ deep understanding of all branches of mathematics. Likewise,
data sense is at the heart of programming. Understanding how to manipulate differ-
ent forms of data is crucial to becoming a good programmer. Understanding how to
declare, initiate, manipulate, read, write, and store data takes purposeful effort.

64

If programming in K–5 education is viewed as primarily a means of self-expression
with just a side order of CT, then the effort it takes to understand the fundamentals
of programming may seem too steep to be entirely necessary. Conversely, if the long
view of preparing students for secondary education, and ultimately for potential
careers in information technology, is taken, then it is imperative that we familiarize
students with the most basic of concepts that comprise CS. Whichever purpose an
educator pursues in this regard, we encourage them to make students and parents
partners in the decision-making process. Not every student aspires to have a career
as a computer programmer one day, nor is every student longing for tinkering and
self-expression through digital channels. Thus, a one-size-fits-all model of CS is not
likely to best serve all students. Building a CS program around just one approach is
a surefire way to ensure that some students’ wants and needs will be excluded.

65

CHAPTER 3 Data Dialogue

RESOURCE SOURCE LINK

C# Data Types
Reference

Tutorials Point

(iste.org/standards/
computational-thinking)

Java Data Types
Reference

Tutorials Point

(tutorialspoint.com/
Data-types-in-Java)

C# Reference
for Built-in Data
Types

Microsoft
Corporation

(docs.microsoft.com/en-us/
dotnet/csharp/language-reference/
keywords/built-in-types-table)

Visual Studio
Download

Microsoft
Corporation

(visualstudio.microsoft.com/
downloads)

RESOURCES

