
C H A P T E R

28

4

Robotics and 
Computational 
Thinking

Unless you’ve been hiding under a rock or perhaps just too busy to be paying 
attention, you’ll know about the current trend in K–12 education to have schools 

incorporate computational thinking into classroom instruction. However, CT isn’t 
new. Let’s briefly explore its historical uses, gain a better understanding of how it’s 
applied, and get some additional resources for CT before integrating it with robotics. 

Computer scientist Seymour Papert was the first to use the term CT in education 
(1980) and advocated for a pragmatic approach to knowledge construction using 
computers and the Logo educational programming language. Papert believed this 
could assist learners in developing powerful critical thinking and reasoning skills. 
Shortly after that, theoretical physicist Ken Wilson made significant advances in the 
field of computational science with computer software that used detailed algorithms 
to carry out simulations. Consequently, leaders in computational science used CT 
to describe the habits of mind they developed, and many reported learning CT by 
designing computations, instead of studying CS (Guzdial, 2015).

In 2006, CT was introduced in education by CS professor Jeannette Wing (Wing 
2006). She described CT as a thinking tool used to solve problems and promoted 
the idea that CT builds on both human and computing processes. The field of 



29

CHAPTER 4   Robotics and Computational Thinking

28

computing education research became revitalized due to Wing’s introduction, along 
with well-publicized breakthroughs in computational science and rapid digitization 
of society’s infrastructure and industry’s major functions. 

Then, with the support of scientists who applied CT across various fields as well 
as congress, CS was included in the definition of STEM in 2015, and the National 
Science Foundation (NSF) supported the current movement to incorporate both CT 
and CS into K–12 education. 

CT ELEMENT DESCRIPTION
METHOD FOR 
INTRODUCING

Decomposition Decomposition helps learners 
break down complex problems 
into easier to manage pieces.

The best way to start is with 
a task they already do. Like 
brushing their teeth, tying a 
shoelace, or making breakfast.

Pattern 
Recognition

Pattern recognition is mapping 
similarities and differences in 
decomposed problems, which 
is an important skill to have for 
making predictions.

This can be introduced to 
students by showing them 
images of various animals, 
desserts, or even text.

Abstraction Abstraction is simply the 
process of taking away or 
removing features from 
something in order to make 
a set of essential features. 
It has also been described 
as the process of removing 
unnecessary features or 
removing the fluff (which I like).

The abstraction process 
can be leveraged by having 
students plan a party, 
vacation, or trip to the movies 
and then solve problems by 
removing all irrelevant details 
and patterns.

Algorithm design Algorithm design is creating 
step-by-step logical series of 
instructions (algorithms) for 
solving problems.

Start students out by having 
them create logical steps to 
completing a familiar task 
and then have them flowchart 
it using the recommended 
universal symbols.

Table 4.1   Introducing the four elements of CT to students



30

PART 1   Planning and Building Student Capacity for Robotics 

Although there is no exact definition of CT, it is widely accepted in education 
that CT has four elements (decomposition, abstraction, pattern recognition, and 
algorithm design) and that learning and applying CT helps learners understand 
the logic and algorithmic processes that are the foundation of both hardware and 
software designs. I, therefore, believe that using CT is critical for designing and 
working with robotics. Furthermore, educators can leverage the power of CT as a 
higher-order problem-solving skill by helping students build competency in CT by 
developing their versatility for recognizing and applying the four elements of CT to 
everyday situations before doing so with robotics. Table 4.1 shares a breakdown of 
the four elements along with suggested methods for introducing them to students.

How CT Differs from CS
Simply put, computational thinking is a problem-solving process (or set of pro-
cesses and skills). Computer science (CS) is a discipline, CT is not.

According to the K–12 Computer Science Framework 
(2016), CS is a discipline that is part of computing edu-
cation. Computing education in K–12 schools includes 
computer literacy, educational technology, digital citi-
zenship, information technology, and computer science 
(p. 13). As the foundation for all computing, computer 
science is “the study of computers and algorithmic pro-
cesses, including their principles, their hardware and 
software designs, their applications, and their impact on 
society” (Tucker et. al, 2006, p. 2).

Because CT is a problem-solving skill, it can also be 
applied in disciplines other than computer science. 
This book aims to eliminate a lot of the guesswork for 
educators from the various disciplines attempting to 
implement CT by providing a plethora of ready-to-use 
resources in the forthcoming pages. 

The K–12 Computer Science Framework is an excellent 
source for either beginning or improving our under-
standing of how to incorporate CT into instruction. The 
framework focuses on core concepts and core practices 
that describe what students should know about CT/

Resources for 
Computational 
Thinking 
ISTE: Computational thinking 
for all (bit.ly/30cDqsV) 

How-to blog with 
a plethora of CT 
resources.

ISTE: How to develop  
computational thinkers  
(bit.ly/2HONOjU) 
How-to blog with strategies 

for developing 
computational 
thinkers across the 
disciplines.

RESOURCE



31

CHAPTER 4   Robotics and Computational Thinking

Figure 4.1: K–12 Computer Science Framework Core Practices 
Highlighting Computational Thinking.

1

FOSTERING  
AN INCLUSIVE  
COMPUTING  

CULTURE
2

COLLABORATING 
AROUND 

COMPUTING

P R A C T I C E S 3

RECOGNIZING  
AND 

DEFINING 
COMPUTATIONAL  

PROBLEMS

4

DEVELOPING 
AND USING 

ABSTRACTIONS

5

CREATING  
COMPUTATIONAL 

ARTIFACTS

6

TESTING  
AND REFINING 

COMPUTATIONAL 
ARTIFACTS

7

COMMUNICATING 
ABOUT 

COMPUTING

Core Practices
+ Computational Thinking

Practices 1, 2, and 7:
General practices  
of CS that support 
computational 
thinking

Practices 3–6:
Computational  

thinking practices



32

PART 1   Planning and Building Student Capacity for Robotics 

CS and what they should be able to do with that knowledge. It also shows how to 
connect CT/CS to other learning (i.e., ELA, math, science, engineering, etc.). The 
diagram of the core practices (shown in Figure 4.1) shows as shaded circles those 
practices (1, 2, and 7) that support CT.

To complement both the K–12 Computer Science Framework and the CSTA K–12 
Computer Science Standards for Students, ISTE developed the CT Competencies for 
educators to help schools integrate CT across all disciplines and with all students 
by correlating it to what they already teach. 

It is also important for teachers to understand that the CS standards and CT 
Competencies are not just about programming and coding; and were intentionally 
written to align with the academic subjects that they teach. Now that computers are 
part of everything we do and educational technology must be used by all teachers 
to augment instruction, these competencies are extremely helpful with assisting 
learners with becoming computational thinkers who can leverage computing to 
solve problems innovatively.

ISTE Computational Thinking Competencies
▶ 1. Computational Thinking (Learner)
Educators continually improve their practice by developing an understanding of com-
putational thinking and its application as a cross-curricular skill. Educators develop a 
working knowledge of core components of computational thinking: such as decompo-
sition; gathering and analyzing data; abstraction; algorithm design; and how comput-
ing impacts people and society. Educators: 

a. Set professional learning goals to explore and apply teaching strategies for inte-
grating CT practices into learning activities in ways that enhance student learning 
of both the academic discipline and CS concepts. 

b. Learn to recognize where and how computation can be used to enrich data or 
content to solve discipline-specific problems and be able to connect these oppor-
tunities to foundational CT practices and CS concepts. 

c. Leverage CT and CS experts, resources and professional learning networks to con-
tinuously improve practice integrating CT across content areas.



33

CHAPTER 4   Robotics and Computational Thinking

d. Develop resilience and perseverance when approaching CS and CT learning expe-
riences, build comfort with ambiguity and open-ended problems, and see failure 
as an opportunity to learn and innovate. 

e. Recognize how computing and society interact to create opportunities, inequities, 
responsibilities and threats for individuals and organizations.

▶ 2. Equity Leader (Leader)
All students and educators have the ability to be computational thinkers and CS learn-
ers. Educators proactively counter stereotypes that exclude students from opportuni-
ties to excel in computing and foster an inclusive and diverse classroom culture that 
incorporates and values unique perspectives; builds student self-efficacy and confi-
dence around computing; addresses varying needs and strengths; and addresses bias in 
interactions, design and development methods. Educators:

a. Nurture a confident, competent and positive identity around computing for every 
student. 

b. Construct and implement culturally relevant learning activities that address a 
diverse range of ethical, social and cultural perspectives on computing and high-
light computing achievements from diverse role models and teams.

c. Choose teaching approaches that help to foster an inclusive computing culture, 
avoid stereotype threat and equitably engage all students.

d. Assess and manage classroom culture to drive equitable student participation, 
address exclusionary dynamics and counter implicit bias.

e. Communicate with students, parents and leaders about the impacts of computing 
in our world and across diverse roles and professional life, and why these skills are 
essential for all students.

▶ 3. Collaborating Around Computing (Collaborator)
Effective collaboration around computing requires educators to incorporate diverse 
perspectives and unique skills when developing student learning opportunities, and 
recognize that collaboration skills must be explicitly taught in order to lead to better 
outcomes than individuals working independently. Educators work together to select 
tools and design activities and environments that facilitate these collaborations and 
outcomes. Educators:

a. Model and learn with students how to formulate computational solutions to prob-
lems and how to give and receive actionable feedback.



34

PART 1   Planning and Building Student Capacity for Robotics 

b. Apply effective teaching strategies to support student collaboration around 
computing, including pair programming, working in varying team roles, equitable 
workload distribution and project management.

c. Plan collaboratively with other educators to create learning activities that cross 
disciplines to strengthen student understanding of CT and CS concepts and trans-
fer application of knowledge in new contexts. 

▶ 4. Creativity & Design (Designer)
Computational thinking skills can empower students to create computational artifacts 
that allow for personal expression. Educators recognize that design and creativity can 
encourage a growth mindset and work to create meaningful CS learning experiences 
and environments that inspire students to build their skills and confidence around 
computing in ways that reflect their interests and experiences. Educators:

a. Design CT activities where data can be obtained, analyzed and represented to 
support problem-solving and learning in other content areas.

b. Design authentic learning activities that ask students to leverage a design process 
to solve problems with awareness of technical and human constraints and defend 
their design choices. 

c. Guide students on the importance of diverse perspectives and human-centered 
design in developing computational artifacts with broad accessibility and usability.

d. Create CS and CT learning environments that value and encourage varied view-
points, student agency, creativity, engagement, joy and fun.

▶ 5. Integrating Computational Thinking (Facilitator)
Educators facilitate learning by integrating computational thinking practices into the 
classroom. Since computational thinking is a foundational skill, educators develop 
every student’s ability to recognize opportunities to apply computational thinking in 
their environment. Educators:

a. Evaluate and use CS and CT curricula, resources and tools that account for learner 
variability to meet the needs of all students. 

b. Empower students to select personally meaningful computational projects. 

c. Use a variety of instructional approaches to help students frame problems in ways 
that can be represented as computational steps or algorithms to be performed by 
a computer. 



35

CHAPTER 4   Robotics and Computational Thinking

d. Establish criteria for evaluating CT practices and content learning that use a variety 
of formative and alternative assessments to enable students to demonstrate their 
understanding of age-appropriate CS and CT vocabulary, practices and concepts.

Integrate CT with the 
ISTE CT Competencies
ISTE Computational Thinking 
Competencies for Educators 
(bit.ly/2CVPdBt) 

Integrate CT across 
disciplines and with 
all students.

RESOURCE

Get support for  
CT integration with  
ISTE U!
ISTE U: Introduction to Com-
putational Thinking for Every 
Educator (bit.ly/2V91MGA)
Online course assisting educators 
with integrating computational 

thinking across 
all disciplines and 
grade levels.

RESOURCE

As you can see, there is a lot to unpack within the indica-
tors of the CT competencies. In the context of robotics, my 
suggestion is to focus on how you want to teach CT and 
see evidence of its elements as students plan, build robots, 
program robots, and test and evaluate their designs and 
final solutions. Also, bear in mind that these competencies 
serve as guidelines for you to unpack and correlate to the 
standards in your content area—in tandem with the many 
of the concepts and practices found in the K–12 Computer 
Science Framework and the CSTA K–12 Computer Science 
Standards for Students.

Introduction to Computational Thinking for Every 
Educator (ISTE U Course)
To assist educators with building and exploring digital 
age competencies (spanning hot topics in both computer 
science and edtech), ISTE has created ISTE U. 

ISTE U is a curation of engaging professional learning 
experiences via a virtual hub for educators to experience 
anywhere and at their own pace. The courses are eligible 
for graduate-level credit through the Continuing Education 
and Professional Development Department at Dominican 
University of California.

The Introduction to Computational Thinking for Every 
Educator course was developed in collaboration with 
Google to guide and supports educators as they design and 
plan lessons that integrate CT across all disciplines and 
grade levels. Moreover, the course increases both awareness 
and understanding of how CT can be incorporated into a 
school’s curricula plan.



36

PART 1   Planning and Building Student Capacity for Robotics 

Start Teaching Computational Thinking with 
Unplugged Lessons
The purpose of beginning CT with unplugged activities is to help students make 
connections between CT and previous learning, to clear up any misconceptions 
about CT, and to promote critical thinking and problem-solving in fun and engag-
ing ways while building the right background knowledge needed for CS skills such 
as designing and programming robots. The lessons are labeled unplugged because 
they are taught without using computers or tech tools. 

So, if you’re wanting to engage students who are new to CT and CS and do not have 
any prior knowledge, look no further than CS Unplugged (csunplugged.org) for a 
variety of unplugged activities. Some of which include the following: 

1. Binary numbers: Six lessons, ages 5–10 with connections to art, literacy, and 
Music. 

2. Kidbots: Four lessons, ages 5–10 with four curriculum integrations and 50 
programming challenges.

3. Sorting networks: Four lessons, ages 5–14 with four curriculum integrations.

4. Error detection and correction: Three lessons, ages 5–10 with five curricu-
lum integrations and 24 programming challenges.

5. Searching algorithms: Six lessons, ages 5–10 with four curriculum 
integrations.

CS Unplugged Lessons 
and Printables
CS Unplugged: Unplugged 
computer science lessons 

(csunplugged.org) 
Teach computer 
science without a 
computer!

RESOURCE



37

CHAPTER 4   Robotics and Computational Thinking

Computational Thinking
The following Code.org unplugged lesson is one that I highly recommend teachers 
use when starting to teach CT. The lesson doesn’t have a specific grade level and 
can be adapted to most K–8 scenarios and content areas. However, K–2 teachers 
will need to provide more scaffolds to support students who are not yet able to read.  

Unplugged Lesson: Computational Thinking
code.org/curriculum/course3/1/Teacher

Overview

In this lesson, students build competence for the four CT elements (decomposition, 
pattern matching, abstraction, and algorithms) by using examples of what fictional 
players have done to figure out how to play an actual game. As students learn to put 
into practice the four elements of CT in one cohesive activity, the lesson provides 
them with the foundational problem-solving skills needed for designing and pro-
gramming with robotics. Think of it as stacking building blocks to form the founda-
tion for a much bigger and more complex structure. 

The lesson provides steps for teachers to take for the following: 

• Unpacking the vocabulary for CT 

• Reinforcing the CT practices for students with user experience scripts found 
in the CT kit

• Pattern matching and abstraction with a color, animals, and an object

• Pattern matching is augmented mathematically when adding and finally 
multiplying. Here teachers can help students follow the same steps but with 
different numbers as the lesson suggests, ensuring they understand the con-
cepts but in different scenarios

• CT assessment

Unplugged Lesson



38

PART 1  Planning and Building Student Capacity for Robotics 

Duration

The basic lesson time is 25 minutes and only includes the activity. If time permits, 
introductory and wrap-up suggestions can be implemented to dive deeper into the 
subject matter, extend work time, and allow you to make concrete connections to 
robotics and programming. It is also important to note that time will vary depend-
ing on your students’ reading and writing ability. My suggestion is to build in some 
flex time and allow for multiple opportunities to display mastery.

Objectives

STUDENTS WILL

• Analyze information to draw conclusions

• Match identical portions of similar phrases to match patterns

• Identify differences in similar phrases and abstract them out

Vocabulary

The lesson introduces students to the 4 elements of CT.

Figure 4.2: Computational thinking lesson vocabulary.

Students who are not independent readers yet will need assistance with sounding 
out the elements. Tips on sounding out each of the elements by syllable are pro-
vided along with the definitions (see Figure 4.2). 



39

CHAPTER 4   Robotics and Computational Thinking

Materials, Resources, and Teacher Prep 

FOR STUDENTS

• One die per group

• One Computational Thinking Kit per group

• Pens, pencils, and scissors

• Computational Thinking Assessment for each student

FOR TEACHER

• Lesson video

• Teacher lesson guide

• One printed Computational Thinking Kit for each group

• One printed Computational Thinking Assessment for each student

Warm Up

Inform students that they will sum up all the numbers between 1 and 200.

• To ease any anxieties that they may have, be sure to express that this is not a 
graded exercise.

• Now, inform them that they must do it all in their heads.

• Add the time constraint of thirty seconds.

• They may feel overwhelmed. This is intentional. You can indicate with your 
tone and demeanor that you might be crazy asking this of them but begin 
timing with a resounding: “Starting NOW.”

• Watch the class as you keep time. How many are lost in thought?

When time is up, ask if anyone was able to get the total.

• Ask if there is anyone who thought the problem was so hard that they didn’t 
even attempt it.

• Did anyone attempt it and just not finish? What did they try?

• Guide students toward thinking a little smaller.



40

PART 1  Planning and Building Student Capacity for Robotics 

Explain, “If we break the problem up into smaller pieces, it becomes eas-
ier to manage.”

• Let’s start at the two ends. What is 200 + 1?

• What is 199 + 2?

• What is 198 + 3?

• See a pattern?

Ask, “How many of these pairs will we have?”

• What is the last pair we will find? 100 + 101.

• That means that we have 100 total pairs.

• If we have 100 total pairs of sums of 201, how do we find the final total?

• What is 100 ✕✕ 201?

Ask, “Now, what if we wanted to find the trick to do this with other 
numbers?”

• Can we do it easily with 2,000?

• How about 20,000?

• What stays the same? What is different?

• If we use abstractions to make our end goal something that can change (say 
we name it “blank”) then we can make an algorithm that will work for any 
number.

• Work through the problem until you ultimately arrive at

? = (“blank”/2) ✕ (“blank”+1) 

• Do a few simple examples to show that the algorithm is correct for

blanks = 2, 3, 4, and 5

Finally, you can say something like this: “This is all to show that if you use the tools 
of computational thinking (decomposition, pattern matching, abstraction, and algo-
rithms), you can figure out how to solve problems that no one has already taught 
you how to solve . . . just like we did here! This will be an extremely powerful skill 
for the rest of your life!”



41

CHAPTER 4   Robotics and Computational Thinking

Activities (25 min)

Computational Thinking
This lesson is all about a “Game with No Instructions.” Students will be charged 
with figuring out how to play the game as a small group. The small details of their 
final algorithm are unimportant. What is important is that they were able to take 
a huge task like figuring out how to play a game on their own and take small steps 
toward achieving the goal.

Students will be guided toward discovering the rules using the steps of computa-
tional thinking. Resist the temptation to point the students toward “doing it right” 
and instead allow them to just do it on their own. If they feel stumped or confused, 
encourage the students to look at the information that has been given to them, or if 
they must, allow them to ask a classmate.

Directions

1. Divide students into groups of 2–4.

2. Have the groups read over user experiences to get an idea of how other stu-
dents have played the “Game with No Instructions.”

3. Encourage them to pattern match between each experience by circling the 
sections of words that are identical from player to player.

4. Next, have them abstract away differences from each experience by underlin-
ing words that change from player to player.

Figure 4.3: Finding patterns in computational 
thinking unplugged lesson.



42

PART 1  Planning and Building Student Capacity for Robotics 

5. Using pattern matching and abstraction, have them make a script template for 
gameplay by writing up the circled parts of the other students’ experiences 
and leaving the underlined sections as blanks (see Figure 4.3).

6. Give students a blank sheet of paper to write a list of instructions for how they 
think this game should be played based on the user experiences that they just 
read. This will be their algorithm.

7. Have students play the game using the algorithm that they just made. Each 
player should get at least two turns.

Reflection and Wrap-Up (5 min)

What did we learn? Intended to get students thinking about the big picture and how 
the lesson relates to real-world situations, these questions can be discussed as a 
class, in groups, or among partners.

• What should you try to do when you’re asked to do something and you don’t 
know how?

• If a problem is too hard, what should you try to do?

• If you find similarities in lots of solutions to different problems, what does 
that probably tell you?

• If you have a problem that is just a little different from a problem that you 
have a solution for, what would you do?

Assessment (10 min)

• Hand out the assessment worksheet and allow students to complete the 
activity independently after the instructions have been well explained. This 
should feel familiar, thanks to the previous activities.

Standards Addressed

ISTE Standards for Students

• 1.a. Articulate and set personal learning goals, develop strategies leverag-
ing technology to achieve them and reflect on the learning process itself to 
improve learning outcomes.



43

CHAPTER 4   Robotics and Computational Thinking

• 3.d. Build knowledge by actively exploring real-world issues and problems, 
developing ideas and theories and pursuing answers and solutions.

• 4.a. Build knowledge by actively exploring real-world issues and problems, 
developing ideas and theories and pursuing answers and solutions.

• 5.a. Formulate problem definitions suited for technology-assisted methods 
such as data analysis, abstract models and algorithmic thinking in exploring 
and finding solutions. 

• 5.c. Break problems into component parts, extract key information, and 
develop descriptive models to understand complex systems or facilitate 
problem-solving.

CSTA K-12 Computer Science Standards

• CPP.L1:6-05. Construct a program as a set of step-by-step instructions to be 
acted out.

• CT.L1:6-02. Develop a simple understanding of an algorithm using comput-
er-free exercises.

• CT.L2-01. Use the basic steps in algorithmic problem solving to design 
solutions.

• CT.L2-06. Describe and analyze a sequence of instructions being followed.

• CT.L2-08. Use visual representations of problem states, structures, and data.

• CT.L2-12. Use abstraction to decompose a problem into sub problems.

• CT.L2-14. Examine connections between elements of mathematics and com-
puter science including binary numbers, logic, sets, and functions.

NGSS Science and Engineering Practices

• 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem 
based on how well each is likely to meet the criteria and constraints of the 
problem.

Common Core Mathematical Practices

• Make sense of problems and persevere in solving them.

• Reason abstractly and quantitatively.

• Construct viable arguments and critique the reasoning of others.



44

PART 1  Planning and Building Student Capacity for Robotics 

• Attend to precision.

• Look for and make use of structure.

• Look for and express regularity in repeated reasoning.

Common Core Math Standards

• 3.OA.3. Use multiplication and division within 100 to solve word problems in 
situations involving equal groups, arrays, and measurement quantities.

• 4.NBT.B.4. Fluently add and subtract multi-digit whole numbers using the 
standard algorithm.

• 5.NBT.B.5. Fluently multiply multi-digit whole numbers using the standard 
algorithm.

Common Core Language Arts Standards

• SL.3.1. Engage effectively in a range of collaborative discussions (one-on-one, 
in groups, and teacher-led) with diverse partners on grade 3 topics and texts, 
building on others’ ideas and expressing their own clearly.

• SL.3.3. Ask and answer questions about information from a speaker, offering 
appropriate elaboration and detail.

• L.3.6. Acquire and use accurately grade-appropriate conversational, general 
academic, and domain-specific words and phrases, including those that sig-
nal spatial and temporal relationships.

• SL.4.1. Engage effectively in a range of collaborative discussions (one-on-one, 
in groups, and teacher-led) with diverse partners on grade 4 topics and texts, 
building on others’ ideas and expressing their own clearly.

• L.4.6. Acquire and use accurately grade-appropriate general academic and 
domain-specific words and phrases, including those that signal precise 
actions, emotions, or states of being and that are basic to a particular topic.

• SL.5.1. Engage effectively in a range of collaborative discussions (one-on-one, 
in groups, and teacher-led) with diverse partners on grade 5 topics and texts, 
building on others’ ideas and expressing their own clearly.

• L.5.6. Acquire and use accurately grade-appropriate general academic and 
domain-specific words and phrases, including those that signal contrast, 
addition, and other logical relationships.


